3.315 \(\int \text{sech}^8(c+d x) (a+b \sinh ^2(c+d x))^3 \, dx\)

Optimal. Leaf size=80 \[ -\frac{a^2 (a-b) \tanh ^3(c+d x)}{d}+\frac{a^3 \tanh (c+d x)}{d}-\frac{(a-b)^3 \tanh ^7(c+d x)}{7 d}+\frac{3 a (a-b)^2 \tanh ^5(c+d x)}{5 d} \]

[Out]

(a^3*Tanh[c + d*x])/d - (a^2*(a - b)*Tanh[c + d*x]^3)/d + (3*a*(a - b)^2*Tanh[c + d*x]^5)/(5*d) - ((a - b)^3*T
anh[c + d*x]^7)/(7*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0738987, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {3191, 194} \[ -\frac{a^2 (a-b) \tanh ^3(c+d x)}{d}+\frac{a^3 \tanh (c+d x)}{d}-\frac{(a-b)^3 \tanh ^7(c+d x)}{7 d}+\frac{3 a (a-b)^2 \tanh ^5(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^8*(a + b*Sinh[c + d*x]^2)^3,x]

[Out]

(a^3*Tanh[c + d*x])/d - (a^2*(a - b)*Tanh[c + d*x]^3)/d + (3*a*(a - b)^2*Tanh[c + d*x]^5)/(5*d) - ((a - b)^3*T
anh[c + d*x]^7)/(7*d)

Rule 3191

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x, T
an[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rule 194

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b}, x]
&& IGtQ[n, 0] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \text{sech}^8(c+d x) \left (a+b \sinh ^2(c+d x)\right )^3 \, dx &=\frac{\operatorname{Subst}\left (\int \left (a-(a-b) x^2\right )^3 \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (a^3-3 a^2 (a-b) x^2+3 a (a-b)^2 x^4-(a-b)^3 x^6\right ) \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{a^3 \tanh (c+d x)}{d}-\frac{a^2 (a-b) \tanh ^3(c+d x)}{d}+\frac{3 a (a-b)^2 \tanh ^5(c+d x)}{5 d}-\frac{(a-b)^3 \tanh ^7(c+d x)}{7 d}\\ \end{align*}

Mathematica [B]  time = 0.569323, size = 163, normalized size = 2.04 \[ \frac{\tanh (c+d x) \text{sech}^6(c+d x) \left (\left (232 a^2 b+464 a^3-246 a b^2+75 b^3\right ) \cosh (2 (c+d x))+2 \left (32 a^2 b+64 a^3+24 a b^2-15 b^3\right ) \cosh (4 (c+d x))+8 a^2 b \cosh (6 (c+d x))-304 a^2 b+16 a^3 \cosh (6 (c+d x))+512 a^3+6 a b^2 \cosh (6 (c+d x))+192 a b^2+5 b^3 \cosh (6 (c+d x))-50 b^3\right )}{1120 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^8*(a + b*Sinh[c + d*x]^2)^3,x]

[Out]

((512*a^3 - 304*a^2*b + 192*a*b^2 - 50*b^3 + (464*a^3 + 232*a^2*b - 246*a*b^2 + 75*b^3)*Cosh[2*(c + d*x)] + 2*
(64*a^3 + 32*a^2*b + 24*a*b^2 - 15*b^3)*Cosh[4*(c + d*x)] + 16*a^3*Cosh[6*(c + d*x)] + 8*a^2*b*Cosh[6*(c + d*x
)] + 6*a*b^2*Cosh[6*(c + d*x)] + 5*b^3*Cosh[6*(c + d*x)])*Sech[c + d*x]^6*Tanh[c + d*x])/(1120*d)

________________________________________________________________________________________

Maple [B]  time = 0.089, size = 289, normalized size = 3.6 \begin{align*}{\frac{1}{d} \left ({a}^{3} \left ({\frac{16}{35}}+{\frac{ \left ({\rm sech} \left (dx+c\right ) \right ) ^{6}}{7}}+{\frac{6\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{4}}{35}}+{\frac{8\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{2}}{35}} \right ) \tanh \left ( dx+c \right ) +3\,{a}^{2}b \left ( -1/6\,{\frac{\sinh \left ( dx+c \right ) }{ \left ( \cosh \left ( dx+c \right ) \right ) ^{7}}}+1/6\, \left ({\frac{16}{35}}+1/7\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{6}+{\frac{6\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{4}}{35}}+{\frac{8\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{2}}{35}} \right ) \tanh \left ( dx+c \right ) \right ) +3\,a{b}^{2} \left ( -1/4\,{\frac{ \left ( \sinh \left ( dx+c \right ) \right ) ^{3}}{ \left ( \cosh \left ( dx+c \right ) \right ) ^{7}}}-1/8\,{\frac{\sinh \left ( dx+c \right ) }{ \left ( \cosh \left ( dx+c \right ) \right ) ^{7}}}+1/8\, \left ({\frac{16}{35}}+1/7\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{6}+{\frac{6\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{4}}{35}}+{\frac{8\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{2}}{35}} \right ) \tanh \left ( dx+c \right ) \right ) +{b}^{3} \left ( -{\frac{ \left ( \sinh \left ( dx+c \right ) \right ) ^{5}}{2\, \left ( \cosh \left ( dx+c \right ) \right ) ^{7}}}-{\frac{5\, \left ( \sinh \left ( dx+c \right ) \right ) ^{3}}{8\, \left ( \cosh \left ( dx+c \right ) \right ) ^{7}}}-{\frac{5\,\sinh \left ( dx+c \right ) }{16\, \left ( \cosh \left ( dx+c \right ) \right ) ^{7}}}+{\frac{5\,\tanh \left ( dx+c \right ) }{16} \left ({\frac{16}{35}}+{\frac{ \left ({\rm sech} \left (dx+c\right ) \right ) ^{6}}{7}}+{\frac{6\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{4}}{35}}+{\frac{8\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{2}}{35}} \right ) } \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^8*(a+b*sinh(d*x+c)^2)^3,x)

[Out]

1/d*(a^3*(16/35+1/7*sech(d*x+c)^6+6/35*sech(d*x+c)^4+8/35*sech(d*x+c)^2)*tanh(d*x+c)+3*a^2*b*(-1/6*sinh(d*x+c)
/cosh(d*x+c)^7+1/6*(16/35+1/7*sech(d*x+c)^6+6/35*sech(d*x+c)^4+8/35*sech(d*x+c)^2)*tanh(d*x+c))+3*a*b^2*(-1/4*
sinh(d*x+c)^3/cosh(d*x+c)^7-1/8*sinh(d*x+c)/cosh(d*x+c)^7+1/8*(16/35+1/7*sech(d*x+c)^6+6/35*sech(d*x+c)^4+8/35
*sech(d*x+c)^2)*tanh(d*x+c))+b^3*(-1/2*sinh(d*x+c)^5/cosh(d*x+c)^7-5/8*sinh(d*x+c)^3/cosh(d*x+c)^7-5/16*sinh(d
*x+c)/cosh(d*x+c)^7+5/16*(16/35+1/7*sech(d*x+c)^6+6/35*sech(d*x+c)^4+8/35*sech(d*x+c)^2)*tanh(d*x+c)))

________________________________________________________________________________________

Maxima [B]  time = 1.28064, size = 2368, normalized size = 29.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^8*(a+b*sinh(d*x+c)^2)^3,x, algorithm="maxima")

[Out]

32/35*a^3*(7*e^(-2*d*x - 2*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*
x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 21*e^(-4*d*x - 4*c)/(d*(7
*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) +
7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 35*e^(-6*d*x - 6*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x -
4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x -
 14*c) + 1)) + 1/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21
*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1))) + 16/35*a^2*b*(7*e^(-2*d*x - 2*c)/(d*(7
*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) +
7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 21*e^(-4*d*x - 4*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x -
4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x -
 14*c) + 1)) - 35*e^(-6*d*x - 6*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(
-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 70*e^(-8*d*x - 8*c)/
(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*
c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 1/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(
-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)))
 + 12/35*a*b^2*(7*e^(-2*d*x - 2*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(
-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) - 14*e^(-4*d*x - 4*c)/
(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*
c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 70*e^(-6*d*x - 6*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d
*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*
d*x - 14*c) + 1)) - 35*e^(-8*d*x - 8*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 3
5*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 35*e^(-10*d*x -
 10*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*
x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 1/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) +
 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c)
 + 1))) + 2/7*b^3*(21*e^(-4*d*x - 4*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35
*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 35*e^(-8*d*x - 8
*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x -
 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)) + 7*e^(-12*d*x - 12*c)/(d*(7*e^(-2*d*x - 2*c) + 21*e^
(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x - 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^
(-14*d*x - 14*c) + 1)) + 1/(d*(7*e^(-2*d*x - 2*c) + 21*e^(-4*d*x - 4*c) + 35*e^(-6*d*x - 6*c) + 35*e^(-8*d*x -
 8*c) + 21*e^(-10*d*x - 10*c) + 7*e^(-12*d*x - 12*c) + e^(-14*d*x - 14*c) + 1)))

________________________________________________________________________________________

Fricas [B]  time = 1.53974, size = 2063, normalized size = 25.79 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^8*(a+b*sinh(d*x+c)^2)^3,x, algorithm="fricas")

[Out]

-4/35*((8*a^3 + 4*a^2*b + 3*a*b^2 + 20*b^3)*cosh(d*x + c)^6 - 6*(8*a^3 + 4*a^2*b + 3*a*b^2 - 15*b^3)*cosh(d*x
+ c)*sinh(d*x + c)^5 + (8*a^3 + 4*a^2*b + 3*a*b^2 + 20*b^3)*sinh(d*x + c)^6 + 14*(4*a^3 + 2*a^2*b + 9*a*b^2)*c
osh(d*x + c)^4 + (56*a^3 + 28*a^2*b + 126*a*b^2 + 15*(8*a^3 + 4*a^2*b + 3*a*b^2 + 20*b^3)*cosh(d*x + c)^2)*sin
h(d*x + c)^4 - 4*(5*(8*a^3 + 4*a^2*b + 3*a*b^2 - 15*b^3)*cosh(d*x + c)^3 + 28*(2*a^3 + a^2*b - 3*a*b^2)*cosh(d
*x + c))*sinh(d*x + c)^3 + 280*a^3 - 140*a^2*b + 210*a*b^2 + 7*(24*a^3 + 52*a^2*b - 21*a*b^2 + 20*b^3)*cosh(d*
x + c)^2 + (15*(8*a^3 + 4*a^2*b + 3*a*b^2 + 20*b^3)*cosh(d*x + c)^4 + 168*a^3 + 364*a^2*b - 147*a*b^2 + 140*b^
3 + 84*(4*a^3 + 2*a^2*b + 9*a*b^2)*cosh(d*x + c)^2)*sinh(d*x + c)^2 - 2*(3*(8*a^3 + 4*a^2*b + 3*a*b^2 - 15*b^3
)*cosh(d*x + c)^5 + 56*(2*a^3 + a^2*b - 3*a*b^2)*cosh(d*x + c)^3 + 7*(24*a^3 - 28*a^2*b + 9*a*b^2 - 5*b^3)*cos
h(d*x + c))*sinh(d*x + c))/(d*cosh(d*x + c)^8 + 8*d*cosh(d*x + c)*sinh(d*x + c)^7 + d*sinh(d*x + c)^8 + 8*d*co
sh(d*x + c)^6 + 4*(7*d*cosh(d*x + c)^2 + 2*d)*sinh(d*x + c)^6 + 4*(14*d*cosh(d*x + c)^3 + 9*d*cosh(d*x + c))*s
inh(d*x + c)^5 + 28*d*cosh(d*x + c)^4 + 2*(35*d*cosh(d*x + c)^4 + 60*d*cosh(d*x + c)^2 + 14*d)*sinh(d*x + c)^4
 + 8*(7*d*cosh(d*x + c)^5 + 15*d*cosh(d*x + c)^3 + 7*d*cosh(d*x + c))*sinh(d*x + c)^3 + 56*d*cosh(d*x + c)^2 +
 4*(7*d*cosh(d*x + c)^6 + 30*d*cosh(d*x + c)^4 + 42*d*cosh(d*x + c)^2 + 14*d)*sinh(d*x + c)^2 + 4*(2*d*cosh(d*
x + c)^7 + 9*d*cosh(d*x + c)^5 + 14*d*cosh(d*x + c)^3 + 7*d*cosh(d*x + c))*sinh(d*x + c) + 35*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**8*(a+b*sinh(d*x+c)**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.26696, size = 351, normalized size = 4.39 \begin{align*} -\frac{2 \,{\left (35 \, b^{3} e^{\left (12 \, d x + 12 \, c\right )} + 210 \, a b^{2} e^{\left (10 \, d x + 10 \, c\right )} + 560 \, a^{2} b e^{\left (8 \, d x + 8 \, c\right )} - 210 \, a b^{2} e^{\left (8 \, d x + 8 \, c\right )} + 175 \, b^{3} e^{\left (8 \, d x + 8 \, c\right )} + 560 \, a^{3} e^{\left (6 \, d x + 6 \, c\right )} - 280 \, a^{2} b e^{\left (6 \, d x + 6 \, c\right )} + 420 \, a b^{2} e^{\left (6 \, d x + 6 \, c\right )} + 336 \, a^{3} e^{\left (4 \, d x + 4 \, c\right )} + 168 \, a^{2} b e^{\left (4 \, d x + 4 \, c\right )} - 84 \, a b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 105 \, b^{3} e^{\left (4 \, d x + 4 \, c\right )} + 112 \, a^{3} e^{\left (2 \, d x + 2 \, c\right )} + 56 \, a^{2} b e^{\left (2 \, d x + 2 \, c\right )} + 42 \, a b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 16 \, a^{3} + 8 \, a^{2} b + 6 \, a b^{2} + 5 \, b^{3}\right )}}{35 \, d{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^8*(a+b*sinh(d*x+c)^2)^3,x, algorithm="giac")

[Out]

-2/35*(35*b^3*e^(12*d*x + 12*c) + 210*a*b^2*e^(10*d*x + 10*c) + 560*a^2*b*e^(8*d*x + 8*c) - 210*a*b^2*e^(8*d*x
 + 8*c) + 175*b^3*e^(8*d*x + 8*c) + 560*a^3*e^(6*d*x + 6*c) - 280*a^2*b*e^(6*d*x + 6*c) + 420*a*b^2*e^(6*d*x +
 6*c) + 336*a^3*e^(4*d*x + 4*c) + 168*a^2*b*e^(4*d*x + 4*c) - 84*a*b^2*e^(4*d*x + 4*c) + 105*b^3*e^(4*d*x + 4*
c) + 112*a^3*e^(2*d*x + 2*c) + 56*a^2*b*e^(2*d*x + 2*c) + 42*a*b^2*e^(2*d*x + 2*c) + 16*a^3 + 8*a^2*b + 6*a*b^
2 + 5*b^3)/(d*(e^(2*d*x + 2*c) + 1)^7)